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e |ntroduction
— SRTM data (“Finished” SRTM)
— ALSM data (University of Florida LIDAR)
— Multiscale data fusion framework

e Data assessment of SRTM with ALSM LIDAR data

e Error performance analysis
— Using Autocorrelation function of elevation differences
— Using estimate results from MKS algorithm

e Multiscale fusion results
— Multiscale topography and bathymetry over Miami Beach



Introduction to SRTM

 The SRTM data were acquired in February 2000 by a radar system on-board the

Space Shuttle Endeavour

— Cooperative project of National Geospatial-Intelligence Agency (NGA) , the National
Aeronautics and Space Administration (NASA) and the German and Italian space
agencies

e Sensor types, coverage, resolutions and accuracy of SRTM

— Dual Spaceborne Imaging Radar (SIR-C) and dual X-band Synthetic Aperture Radar
(X-SAR) configured as a baseline interferometer.

— Data collected over 80% of the Earth’s surface (area between 60 degree North and 56
degree South latitude)

— larcsec (~30m) horizontal resolution for the United States

— 3arcsec (~90m) for the rest of the world

— Vertical precision of 10m

. Pro;ect for “Finished” SRTM data
The NGA provides “finished” topographic data from the Shuttle Radar Topography
Mission (SRTM).
— NGA performed quality control checks on the “unfinished” data, filled in small voids
and edited the terrain data to correctly portray water bodies and shorelines.
— The finished product is a uniform grid of elevation values indexed to specific points on
the ground in a standardized Digital Terrain Elevation Data (DTED®) format.
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Multiscale Data Fusion

« Motivation (why bother?)
— Capture multiscale character of

Coarse Resolution

m=0

natural processes or signals Merge data of
— Combine measurements having | different
different resolutions without resolutions

Fill in all data
dropouts

Downward sweep:

Inefficiently resampling data to
a common scale

Upward sweep:
Kalman Filtering

e Various methods

— Fine-to-coarse transformations
of spatial models

— Direct modeling on multiscale

Kalman Smoothing

data structures, e.g. quadtree

e Leads to multiscale Kalman
smoother (MKYS)

Fine Resolution

MKS algorithm implemented
on a quadtree [Chou, et al.,

1994],

[Fieguth, et al., 1995]



MKS Algorithm

 MKS is the globally optimal linear mean squared error (MMSE)
estimator for fusing image data

— [Slatton, Crawford, Evans, 2001]
— Not necessarily the optimal local estimator

o Advantages

— More efficient than batch weighted least squares due to recursion on a Markov
tree data structure

— Unlike sequential least squares, handles measurement and process noise

« Disadvantage
— When quadtree is sparsely populated with data, standard implementation of
MKS is inefficient. Critical problem when data span large range of scales.

— Can be ameliorated with data-driven pruning of quadtree nodes on which full
MKS recursion occurs [Slatton, et al., 2005].



Multiscale Kalman Filter

* Linear process model on the quadtree (scalar form)
— Evolves in scale [Chou, et al. (1994)]

X(S) =D(S)X(Bs) +I'(s)w(s) V seS, s#5,

y(s)= H(s)x(s)+ v(s) VseTcS
X(s) = state variable s = node index
y(s) = observation (INSAR or LIDAR) s, = root node
d(s) = state transition operator S = set of all nodes on tree
I"(s) = stochastic detail scaling function T = set of all nodes where
H(s) = measurement - state relation a measurement exists
w(s) = white process noise ~ N(0,1) B = backshift operator
V(S) = white measurement noise ~ N (0, R(s)) Q=T? = process noise

R(s) = measurement variance



Unfinished vs. Finished SRTM

[SPCS (NADBS) - ( 834360.88, 580260.20 ) [25755' 41,59" N, 80716’ 30.88" W

h meters (N25.

o Unfinished SRTM (left: white mapped areas are voids) and finished SRTM (right)

— Covered area : Longitude/ Latitude (decimal degree) : 80~81/ 25~26 (Grid shown in state plane
coordinate)

— Resolution: 1 Arc Second (30m)
— Horizontal / Vertical Datum: WGS84/ EGM96 Geoid

e “Unfinished” SRTM:

— Contains occasional voids, or gaps, where the terrain lay in the radar beam's shadow or in areas of
extremely low radar backscatter

— Such as sea, lakes and many water covered surfaces that are flat
* “Finished” SRTM : (provided by NGA)

— Water bodies set to constant value (set to zero).
— Large river and lakes set to monotonically decreasing values.
— Small voids are interpolated across. (Filled area remained as low confident elevations)

.DT2)




Descriptions of study sites(1)

e Three studied Sites
— Selected from Dade County, Florida (Miami metro area)
e Coastal area: Longitude/Latitude : 80.183 ~80.198 / 25.762~25.776
e Urban area : Longitude/Latitude : 80.200 ~80.211 / 25.762~25.776
e Rural area: Longitude/Latitude : 80.472 ~80.487 / 25.612~25.626

Selected
Coastal Area

\
\
P -
—
Selected

.\, Rural Area

Selected
Urban Area




Description of Data Sets

e “Finished” SRTM DTED® Level 2

— Original resolution : 1 arc second (101 feet or ~30m)

— Re-sampled grid spacing of DEM: 80 feet x80 feet ( DEM size 64 x 64)
— Used as coarse resolution data for MKS fusion (at 7t scale)

— Relative accuracy : 6m (Flat area) ~10m (Non-flat area)

e Topographic LIDAR

— Acquired by UF Airborne Laser Swath Mapping (ALSM) system
— Wavelength: 1064 nm (does not penetrate water)

— Grid spacing of DEM: 5 feet x5 feet ( DEM size 1024 x1024)
— Vertical accuracy : ~0.12m

— Used as high resolution data for MKS fusion (at 11" scale)



Descriptions of study sites(2)

* LIDAR : Grid spacing 5 feet (~1.5m), size: 1024 by 1024
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How to determine the sensor noise of SRTM

o Deterministic Approach
— Up sampled SRTM — LIDAR
— SRTM — Down sampled LIDAR

e Stochastic Approach
— Using innovation term in MKS
— Innovation = SRTM — Prior estimate



ACF comparisons between lidar and SRTM (1)
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ACF comparisons between lidar and SRTM (2)

e Area#2: Rural Area
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ACF comparisons between lidar and SRTM (3)

Histogram of Difference (Coastal area) Histogram of Mormalized Difference (Coastal area)
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Innovation analysis at SRTM Scale (1)
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Innovation analysis at SRTM Scale (2)

e Area#2: Rural Area

T Innovation at SRTM scale (Rural area)
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Innovation analysis at SRTM Scale (3)
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Sensor “Noise” for Each Site

Measurement error varies strongly with terrain type (in increasing

order)

— Rural area
— Urban area

— Coastal & Urban area (tall buildings)

As expected, noise variance mostly affected by anthropogenic
structures such as tall build

— SRTM elevations very good when highly localized features (landcover,

INgs

development) are minimally present

Table: The difference between down-sampled LIDAR and finished SRTM

Rural area Urban area Coastal area
Min -4.7345 -190.0511 -190.0223
Max 9.4955 51.4378 61.1432
Mean 3.8341 2.7093 3.6274
STD 1.5302 11.6258 16.3718




MKS Data fusion

e Two data sets are used on quadtree structure

— “Finished” SRTM is re-sampled from original resolution (101 feet (~30m)) to 80 feet
(~24 m) and located in 7t scale (or SRTM scale).

— Topography LIDAR is sampled to its original resolution (5 feet (~1.5m)) and located
in 11 scale (or LIDAR scale).

Coarse Resolution

e Data sizes 1* Scal

— “Finished” SRTM : 64 x 64
— Topography LIDAR : 1024 x 1024

—
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MKS Data fusion (Urban Area)
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Gradient and Curvature (Urban Area
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MKS Data fusion (Rural area)
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Coastline Pixels

Coastline exhibits man?/ small-
scale variation, particularly
near developed areas

— Marinas, canals, modified
shorelines

Fuse lidar to capture this detail

Use coastline information from
lidar to boost SRTM
uncertainty measure prior to
fusion
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MKS Data fusion (Coastal area)
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2 meter flood filled image
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 Black color mapped sites indicate flooding
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Conclusion

 In this work, data from the Shuttle Radar Topographic Mapping
(SRTM) mission are compared to and fused with UF ALSM
high resolution topographic LIDAR observations over the shoreline
of the South Florida coastline near the city of Miami.

» The evaluation of both vertical and horizontal accuracy of the
SRTM DTED-2 near the coast line is made.

« This study is accomplished by statistical characterization of the
Kalman innovations.

 We employed the MKS algorithm to assess the potential benefits
of including SRTM data in the LIDAR data set.



